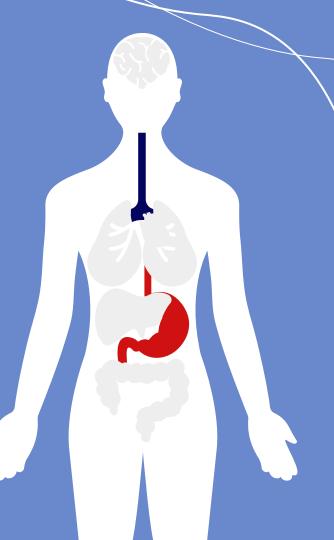
Gut dysbiosis and its Association with ASD

Madelene Grullon, Rifath Siddique, Noor Khawaja, Deisy Rosendo

REACH Program August 2022


Outline

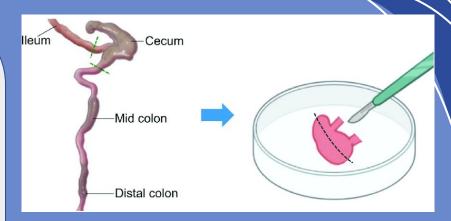
Introduction

Specific Aims

Research Plan

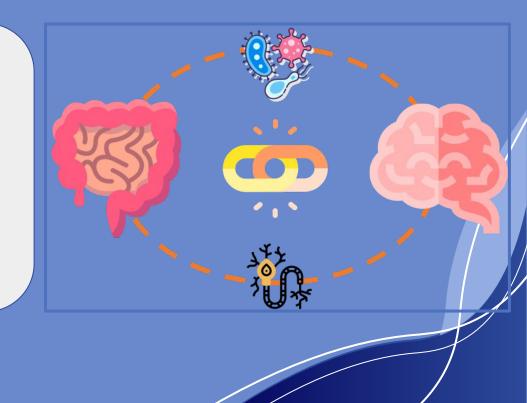

Results and Conclusion

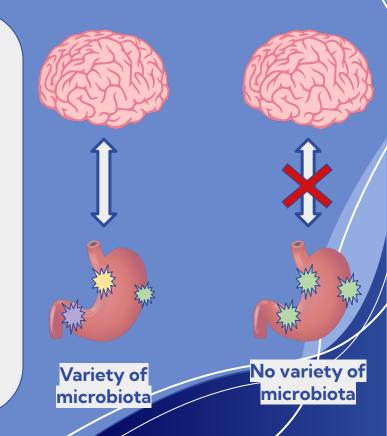
Introduction


Gut Microbiota

- A system of trillions of microorganisms
- Function in the body
- Diet and microbiota
- Cecum

Cecum


- Located in the lower left side of the abdominal cavity
- **Cecum in mice is enlarged**
- Contains bacteria that aid in digestion of plant matter
- Facilitates nutrient absorption


Gut-Brain Axis

Two-way biochemical
signaling that takes place
between the GI tract and
the CNS

Gut Dysbiosis and ASD

- Imbalance of gut microbiota
- Lifestyle choices can have an impact
- Correlation between severity of gut issues and ASD
- Affects certain signaling pathways
- Disrupts Blood Brain Barrier
- Probiotics role

Probiotics

Healthy bacteria

(eg. Bifidobacterium & Lactobacillus)

Improve gastrointestinal diseases

Probiotics

Boosts immunity

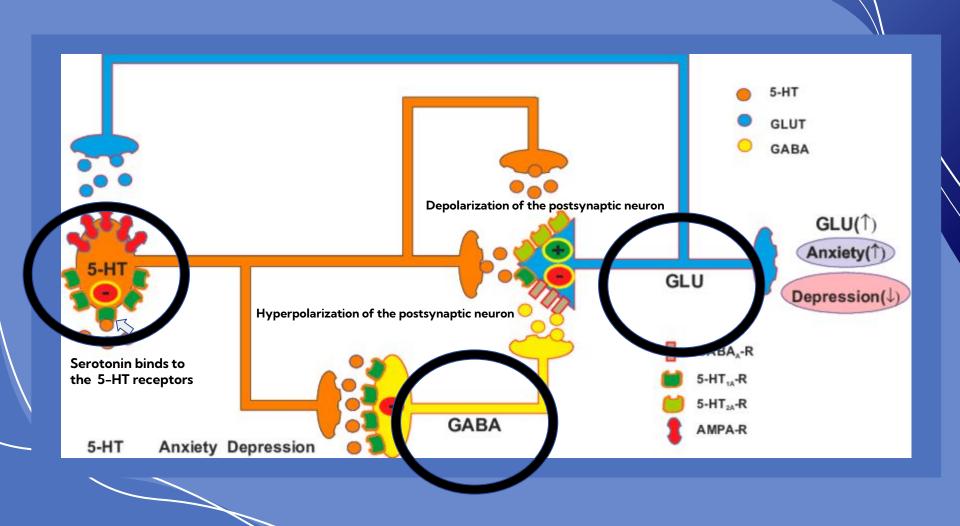
Modulates gut microbiota

Bifidobacterium Bifidum

- Live in the GI tract
- Digests food, absorb nutrients and prevents infection
- **Game Bifidobacterium** species generate GABA

GABA (Gamma-Aminobutyric Acid) :

- Inhibitory neurotransmitter
- Decreasing nerve cell hyperactivity (fear, stress and anxiety)


Children with ASD

- Lower levels of GABA \rightarrow high levels of anxiety

Lactobacillus

- Rod-shaped bacteria
- Produces lactic acid
- Production of fermented dairy products

	Lactobacillus Helveticus		Lactobacillus Paracasei	
•	Regulates the 5HT that balances the excitatory and inhibitory neurotransmission in the PNS and CNS	•	Increases glutamate and GABA in ASD patients.	

Gut Dysbiosis and ASD

Knowns

- The human gut is home to a variety of microbes
- ASD is associated with an unbalanced gut microbiota
- Children with ASD are at a greater risk of Gl concerns
- Probiotics exert beneficial effects in both the gut and the brain

Questions

- Is there a cause- effect relationship between ASD and gut microbiota?
- Is gut microbiota in ASD patients different from someone who does not have ASD ?
- Does adding probiotics alter the gut microbiota in ASD patients or impact their behaviors ?

Hypothesis

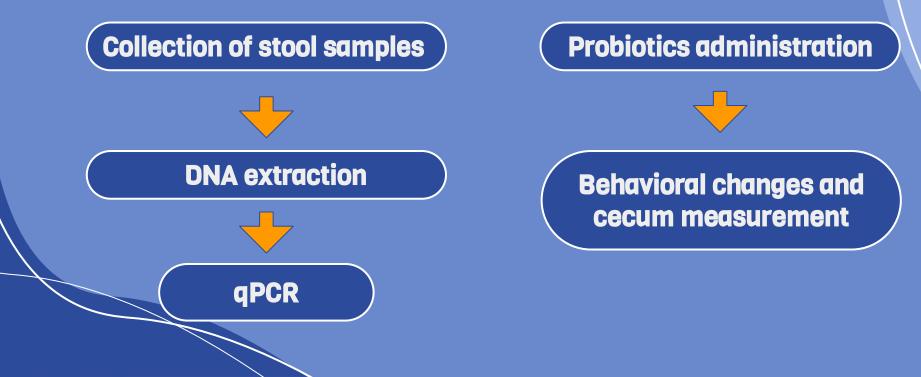
16s rRNA gene can help us identify gut microbiota and manipulating microbiota by administering probiotics can be used as a treatment for ASD by decreasing autism-related behaviors.

Specific Aims

Specific Aims

Specific Aim 1

Identification of gut microbiota through 16S rRNA gene in BTBR and C57 mice.



Evaluation of autism-related behavioral phenotypes and cecum measurement in BTBR and C57 mice after administering probiotics.

Research Plan

Experimental approach

1. Identifying Microbiota

2. Modification of diet

Animal models

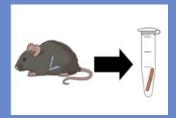
3 BTBR mice

Absence of corpus callosum
Smaller Hippocampal Commissure
Exhibits autism-like behaviors

3 C57BL/6 mice
Most widely used strain in
biomedical research
Exhibits wild type behaviors

Identifying Microbiota

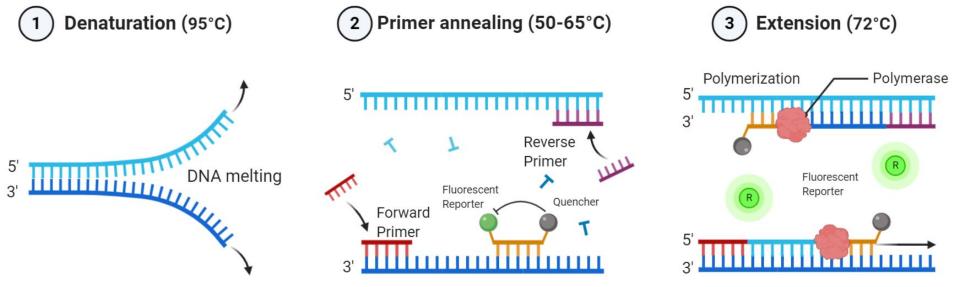
1. Collection of stool samples


Place mouse in cage Disinfect cage with 70% ethanol Wait for mice to defecate

Up to 40 minutes of waiting.

Collect sample and place in tube

Later on used for DNA extraction



Identifying Microbiota

2. DNA extraction

- 1. Disruption of cells to release DNA for collection
- 2. Removal of Contaminating Biomolecules with buffers and washers

Identifying Microbiota

3. qPCR

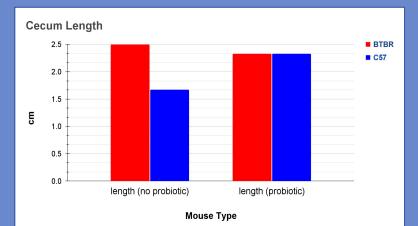
Modification of diet

1. Probiotics administration

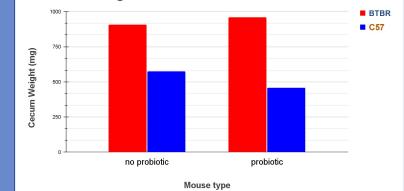
10⁶ CFU of probiotic for a total of 3 days Including Lactobacillus and Bifidobacterium

Modification of diet

2. Behavioral data collection process 10 minute home cage recordings Excessive Grooming Rearing Behaviors Nibbling "Spidermouse" Cage location


qPCR Microbiota Identification

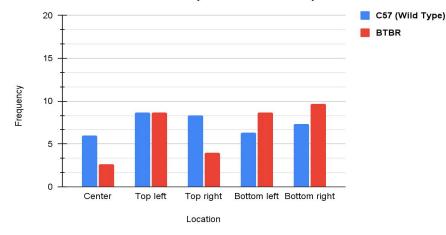
Qualitative - <u>qPCR</u> <u>Identification</u> shows us whether or not a microbiota is present


Next steps - <u>qPCR</u> <u>Profiling</u> which would give us *quantitative results* of how much of a specific microbiota is expressed

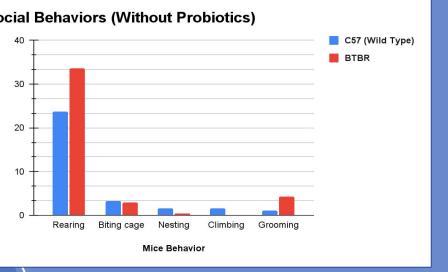

	C57	C57	C57	BTBR	BTBR	BTBR
Bacteroides fragilis	+	+	+	+	+	+
Escherichia coli	+	+	+	+	+	+
Candida albicans	+	+	+	+	+	+
Streptococcus agalactiae	+	+	+	+	+	+
Bifidobacterium longum	+	+	+	+	+	+
Enterococcus faecalis	+	+	+	+	+	+
Helicobacter pylori	+	+	+	+	+	+
Streptococcus mitis	+	+	+	+	+	+
Citrobacter freundii	+	+	+	+	+	+
Clostridium perfringens	+	+	+	+	+	+

Cecum measurements

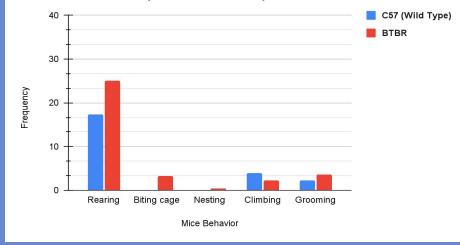
Mice cecal weight



Behavioral observations


Mice Movement Patterns

Mice Movement Patterns (Without Probiotics)


Mice Movement Patterns (With Probiotics)

Social Behaviors

Social Behaviors (With Probiotics)

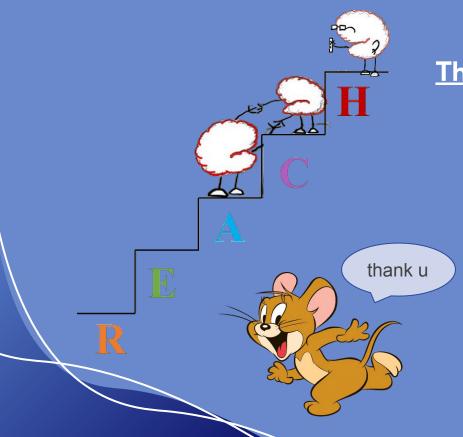
Conclusion

qPCR Identification

The data showed us that gut microbiota associated with ASD is present in both mice

<u>Behavioral observation</u>

Repetitive behaviors associated with anxiety decreased while interactive and explorative behaviors increased


<u>Cecum measurements</u>

- Probiotics caused a slight increase BTBR cecal size probably due to an influx of microbiota
- □ C57 cecal size minor fluctuation due to already normal function

Limitations/Future Steps

- Mice might not eat the probiotics
- □ Time (conducting the procedure within a specific time frame)
- Explore Different types of behavioral analysis experiments
- We will experiment on different types of probiotic strains

Acknowledgements

Thank you to the REACH Program: Pargol Mashati Joanne Andre Dan Rosenthal Juan Marcos Craig Kelly Daniel Mishan Isaac Vingan

References

Abdellatif, B., McVeigh, C., Bendriss, G., & Chaari, A. (2020, June 10). *The promising role of probiotics in managing the altered gut in autism spectrum disorders*. International journal of molecular sciences.

Allaband, C., McDonald, D., Vázquez-Baeza, Y., Minich, J. J., Tripathi, A., Brenner, D. A., Loomba, R., Smarr, L., Sandborn, W. J., Schnabl, B., Dorrestein, P., Zarrinpar, A., & Knight, R. (2019, January). *Microbiome 101: Studying, analyzing, and interpreting gut microbiome data for clinicians*. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

Eeckhout, E., & Wullaert, A. (2018, February 5). *Extraction of DNA from murine fecal pellets for downstream phylogenetic microbiota analysis by next-generation sequencing*. Bio-protocol.

McNamee, D. (2019, May 31). Autism and the gut microbiome: Further evidence strengthens link. Medical News Today.

Mehra, A., Arora, G., Sahni, G., Kaur, M., Singh, H., Singh, B., & Kaur, S. (2022, March 8). *Gut microbiota and autism spectrum disorder: From pathogenesis to potential therapeutic perspectives*. Journal of Traditional and Complementary Medicine.

Oh, D., & Cheon, K.-A. (2020, July 1). Alteration of gut microbiota in autism spectrum disorder: An overview. Soa--ch'ongsonyon chongsin uihak = Journal of child & adolescent psychiatry.

Shahi, S. K., Zarei, K., Guseva, N. V., & Mangalam, A. K. (2019, October 15). *Microbiota analysis using two-step PCR and next-generation 16S rrna gene sequencing*. Journal of visualized experiments : JoVE.

Xu, M., Xu, X., Li, J., & Li, F. (2019, July 17). Association between Gut Microbiota and autism spectrum disorder: A systematic review and meta-analysis. Frontiers in psychiatry.

Thank you! :)

Questions?

